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Metal-catalyzed cleavage of a-carbonr-carbon bond is an Scheme 1 2

interesting and useful method in organic reactibriReported M e o 8 oH —CH—R @ R-%—CH _§_CH —CH—R
examples of such reactions focus exclusively on the activation of 2 2 2 2 2 2
strained or functionalized carboncarbon bond3 Although there R =phenyl, alkenyl, alkyl

has been significant advancement in the metal-catalyzed activation 2 * means C= 13%'*C. [Ru] = TpRuPPR(CH;CN)PFs.
of carbon-carbon double and triple bond8 catalytic cleavage of

a o-carbon-carbon bond of the aliphatic type (Scheme 1, eq 1) Scheme 2

has attained less progreds20ne perspective method involves the

use of electrophilic metals to activate functionalized alkynes and O/\ v 1122%1011?:6 C©/

generates carbocations or carbene species to facilitate the cleavage 2 (42%)

of adjacent carboncarbon bond§.” This approach is applicable

to reactions of the metathesis tymnd 1,2-alkyl shiffe8dIn this @ | — n  [Rul. touene C@:]

study, we report a ruthenium-catalyzed 1,3-regioselective methylene To00C3n

transfer in the cycloisomerization of 3,5-dien-1-ynes, which involves nt, x=H(\3\) . 23%

cleavage of twar-carbon-carbon bonds of the aliphatic type (eq n=2 X=H (4) =2 (6, 68%, X=H)

2) n=2 X=0.94D ( d-4) d-6, X= OSOD)
Cyclization of 3,5-dien-1-ynes to benzene derivatives has been @ —& R, woene

implemented by metal complexes via formation of metat OC\J 0% h *

nylidene intermediateésWe sought to apply this method to the A 87%)

synthesis of highly substituted benzefeshich is an important
subject in catalytic reactiort8 As shown in Scheme 2, heating 6,6- ficiently for cyclopentylidenyl derivative® and 12 than their
disubstituted 3,5-dien-1-ynkin hot toluene (100C, 10 h) with cyclohexylidenyl analogue$0 and 11. In the cyclization of 3,5-
10% TpRUPPKCH;CN),PFS¢® catalyst gave 6-propyl-1,2,3,4- dien-1-ynesl3 and 14 (entries 5-6), the resulting benzen&d—
tetrahydronaphthalen2 in 42% yield. Under similar conditions, 22 have the methyl group located at the phenyl C(3)-carbon
the cyclopropylidenyl and cyclobutylidenyl derivativ@sand 4 according to the proton-NOE spectfaThis observation is con-
preferably gave benzene produdisand 6, resulting from a sistent with our observed 1,3-methylene transfer in‘#elabeling
regioselective 1,2-alkyl shift, in yields of 23% and 68% respectively. experiment (Scheme 2, eq 3). The value of this cyclization is
In such cyclizations, we observed a 1,2-shift of the alkynyl proton reflected by the selective 1,2-shift of the cycloalkylidene alkyl
of speciesd-4, indicative of a vinylidene intermediateTo our groups, and the examples are manifested by 3,5-dien-14Fes
astonishment, the catalytic transformation on the cyclopentylidene 17 (entries 79). According to proton-NOE effectd the resulting
analogue? gave tricyclic benzen® in 87% yield; this product products23—25 show no shift for the phenyl substituent, a 1,2-
contained an unexpected methyl group. The structure of bei&ene shift for the uncleaved benzyl group, and a 1,3-shift for the methyl
was determined by the proton-NOE effé€fThis transformation (or methylene) group. This structural rearrangement is amazing
involves not only a regioselective 1,2-alkyl shift, but also a transfer because the phenyl and its cleaved methyl group are in the remote
of the methylene group. We prepared®€-labeled sampl&, in meta position. The synthetic value of this cyclization is evident
which the C(5) carbon (8 atoAiC %) migrated only to the C(6)H from its reaction generality shown in Table 1, which provides an
carbon of benzen@(eq 3). This information suggests that formation easy and selective synthesis of highly substituted ben¥eass
of benzene arises from the @€ndo-digcyclizatiori? of dienyne represented by compoun2b bearing six unequivalent phenyl
7, with one methylene group of the cyclopentylidene ring 1,3- substituents.
migrating to the C(2)-alkyne carbon. Such a 1,3-methylene transfer We prepared deuterated dienyd€’ to understand better this
involves cleavage of two adjacentcarbonr-carbon bonds. The  novel 1,3-methylene transfer. The results shown in Scheme 3 (eq
yields of benzen® are highly dependent on the solvents: benzene 1, entry 1, Z= H) confirm that the C(1)XX = 0.94 D) fragment
(57%, 80°C, 7 h), DMF (71%, 10C°C, 6 h), DMSO (87%, 100 of the cyclopentylidene group is cleaved. The corresponding
°C, 6 h), 1,4-dioxane (65%, 10Q, 4 h), dichloroethane (61%, 80  cyclized productd-8 has a fused cyclopentyl ring with the GH
°C, 8 h). and the CX (X = 0.91 D) units respectively linking to the phenyl
We prepared various 6,6-cycloalkylidenyl-3,5-dien-1-y@ed 7 C(5) and C(4) carbons, whereas the GHivethyl (Y= 0.90 D) is
to examine the generality of this cyclization using the same catalyst located at the C(3) carbon without loss of deuterium content. This
(20 mol %). The reactions worked well for 3,5-dien-1-y@esl2 structural arrangement is identical to those of benz28e&5. One
(entries +-4), and gave substituted benzerd&s8, and19—-20in of the methyl protons of speciek8 (entry 2) arises mainly from
63—93% yields. The cyclization evidently proceeded more ef- the alkynyl deuteriund-7. A similar phenomenon is also observed
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Table 1. Ruthenium-Catalyzed Regioselective Methylene Transfer highly substituted benzenes with atom economy. In this structural
Reaction reorganization, we observe a regioselective 1,3-methylene migration
dienynes? products® (yields) dienynes products (yields)

via extrusion from a cycloalkylidenyl ring, in addition to a
regiocontrolled 1,2-alkyl migration.
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2) oc\: (T7%) 14° \\
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_10%[Ru] ‘@. Y =0.90D, acyl halides, and 2-phenylpropan-1-6lsee examples: (a) Nakao, Y.;
| Z=H Oda, S.; Hiyama, TJ. Am. Chem. So€004 126, 13904. (b) Murahashi,
Y=H S.; Naota, T.; Nakajima, NJ. Org. Chem.1986 51, 898. (c) Abu-
0.92D, Hasanayn, F.; Goldman, M.; Goldman, A. 5.Am. Chem. S0d.992
) 114, 2521, (d) Terao, Y.; Wakui, H.; Satoh, T.; Miura, M.; Nomura, M.
— O J. Am. Chem. So@001, 123 10407.
| 10 % [Ru] .O. (4) For metathesis reactions, see reviews: (a) Trnka, T. M.; Grubbs, R. H.
S 6% Acc. Chem. Re®001, 34, 18—29. (b) Mori, M. Top. Organomet. Chem
SN 123 CHyl 1998 1, 133. (c) Poulsen, C. S.; Madsen, &nthesi2003 1.
5 - (5) For nonmetathesis reactions, see the examples: (a) Jun, C.-H.; Lee, H.;
Moon, C. W.; Hong, H.-SJ. Am. Chem. Soc001, 123 8600. (b)
Shimada, T.; Yamamoto, Y. Am. Chem. So2003 125 6646. (c) Datta,
S.; Chang, C.-L.; Yeh, K.-L.; Liu, R.-S]J. Am. Chem. SoQ003 125,

JQ 9294 and references therein.
|) ) p (6) Reviews: (a) Aubert, C.; Bruisine, O.; Malacria, @hem. Re. 2002
adh RuL 102 813. (b) Diver, S. T.; Giessert, A. CThem. Re. 2004 104, 1317.
—RuU

B (7) Selected examples: (a) Chatani, N. Furukawa, N.; Sakurai, H.; Murai, S.
l Organometallicsl996 15, 901. (b) Fustner, A.; Stelzer, F.; Szillat, H.

R2 Am. Chem. So@001, 123 11863. (c) Marion, F.; Coulomb, J.; Courillon,
[ @ 4 O } C.; Fensterbank, L.; Malacria, MDrg. Lett. 2004, 6, 1509. (d) Nieto-
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Oberhuber, C.; Munoz, P. M.; Bunuel, E.; Nevado, C.; Cardenas, D. J.;
Echavarren, A. MAngew. Chem., Int. E®2004 43, 2402.

X L c X
o Q (8) (a) Merlic, C. A.; Pauly, M. EJ. Am. Chem. Sod 996 118 11319. (b)
l R? “ Miura, T.; Iwasawa, NJ. Am. Chem. So@002 124, 518. (c) Shen, H.-
‘E“ZZC{I!’E“NPP“J R O' C.; Pal, S.; Lian, J.-J.; Liu, R.-S. Am. Chem. So2003 125 15762.(d)
X=H1 Rul Kusama, H.; Takaya, J.; Iwasawa, NAm. Chem. So@002 124 11592.
’ X B 9) Cyglization”of Z,g-disugstguted(g-ethyr&yl)styrene?kby T]DR&JPE(EHS- |
.. . . o CN),PF; followed 5endo-digmode and gave 2-alkenyl indenes exclu-
for the alkynyl iodide speciels15 (eq 2) which transfers its iodide sively. The preference for tgllwis cyclizatiogn is becauseythe corresponding
to the benzyl methylene group of produe23. 6-endo-digmode leads to dearomatization of the reaction intermediate.
. . . . . See: Madhushaw, R.-J.; Lo, C.-Y.; Huang, C.-W.; Su, M.-D.; Shen, H.-
Shown in Scheme 4 is our proposed mechanism, in which the C.: Pal, S.: Shaikh. I. R.: Liu. R.-S. Am. Chem. So2004 126, 15560.
initial step involves formation of a rutheniunvinylidene species (10) gor ?1etal_CaialyéecdhsymhISSiSZ?)fO r(wliglrg)é szuggiitu(tbe)d;)enzcla\‘ne% skeer; (ag_Saito,
8 i : : : .; Yamamoto, em. Re. . sao N.; Takahashi,
A® via 1'2_'Sh'_fts of hydr_Ogen _and iodo grou*f_?sﬁ—endc_)-dlg K.; Lee S.; Kasahara, T.; Yamamoto, ¥. Am. Chem. So2002 124,
Electrocyclizatio®? of speciesA gives cyclohexadienyl catioB. ézssgoc()c) Ygg]gmo;o, Y.; Ishii, J.-i.; Nishiyama, H.; Iltoh, X.Am. Chem.
: i H ; ocC 4 1 71
We envisage that Catlomc charge of SpcheBSSIdeS ma_mly Or_] (11) The'H-NOE spectra of benzene derivativ8s21, 23, 24, and 25 are
the Ru-C carbofi®*3and induces a selective 1,2-alkyl shift to give provided in Supporting Information.

cationic intermediateC. This species is stabilized by a cationic ~ (12) Cyclization of 3,5-dien-1-ynes to benzene products by this catalyst can
K . . be achieved by the-éndo-dlgpathway, but the C(5)-carbon of starting
pentadienyl resonance. Attack of the ruthenium center of species 3,5-dien-1-yne shows a 1,2-shift. OGIC(5)-labeling experiment in

C at the remote benzyl Gttarbon induces 1,2-phenyl! shift, and w3 ?ﬁhem? 2 (eq h3) is C_hafftiCtet“SéC r?bﬁlgo-dlggy(?llzf_iﬂlon- S?ﬁ "ELEC'
; : . o . e cationic charge in structuB should reside mainly on the
gives cyclobutylruthenium specids; the driving force for this carbon because t%e TpRu fragment is an electron}/rich center, which
transformation is the formation of an extraRQ bond. For species stabilizes the adjacent carbocation more efficiently.
¢ . : ' : 14) (a) Hess, B. A., Jr.; Schadd, L. J.; PancirJJAm. Chem. Sod 985
D, the 1,5-sigmatropic alkyl shift (via suprafacial retention) leads a4 50)7’ o (55 Bermar bbb, M. A S 1 B o .
to intermediateE, and ultimately gives the observed produ2® J. Am. Chem. S0d.984 106, 1198..
and24. We do not exclude the possibility that specRsan be (15) The behavior of 3,5-dien-1-yng is distinct from its cycloalkylidene
. . . . . analogues. We envisage that its elongation pro@u@cheme 2, eq 1)
directly transformed into speciés through a “pushk-pull” mech- arises from the €H activation of either the methyl or the GEIH; group
anism, as shown by structuB. In this pathway, the ruthenium by ruthenium via intermediatB. Such C-H activations are unlikely to
. occur for cycloalkylidene analogues because of their restricted ring
attacks at the benzyl carbon simultaneously when the-®u conformations. The mechanism will be characterized in future studies.

carbocation induces a 1,2-shift of the other benzyl group. The (16) Benzene productsand6 (Scheme 2, eq 2) are proposed to arise from an

6 intermediate such as speci€s(Scheme 4) which will not undergo ring
proposed mechanisitérationalizes the observed alkyrdfi and contraction to yield an intermediate lik2.

iodide shifts of starting 3,5-die-1-nynéls7 andl-16 (Scheme 3). (17) This 1,3-methylene reaction is not applicable to common internal alkynes
In summary, we report a new ruthenium-catalyzeenglo-dig except for iodoalkynes.
cyclization of 6,6-cycloalkylidenyl-3,5-dien-1-yrigéshat produces JA0504901
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